The Stable Manifold Theorem for Semi-linear Stochastic Evolution Equations and Stochastic Partial Differential Equations I: the Stochastic Semiflow
نویسندگان
چکیده
The main objective of this work is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts I, II. In Part I (this paper), we establish a general existence and compactness theorem for Ck-cocycles of semilinear see’s and spde’s. Our results cover a large class of semilinear see’s as well as certain semilinear spde’s with non-Lipschitz terms such as stochastic reaction diffusion equations and the stochastic Burgers equation with additive infinite-dimensional noise. We adopt a notion of stationarity employed in previous work of one of the authors with M. Scheutzow ([M-S.2], cf. [E-K-M-S]). In Part II of this work ([M-Z-Z]), we establish a local stable manifold theorem for non-linear see’s and spde’s.
منابع مشابه
The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations Ii: Existence of Stable and Unstable Manifolds
This article is a sequel to [M.Z.Z.1] aimed at completing the characterization of the pathwise local structure of solutions of semi-linear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. The characterization is expressed in terms of the almost sure long-time behavior of trajectories of the equation in relation to the stati...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملThe stable manifold theorem for non-linear stochastic systems with memory II. The local stable manifold theorem
We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-linear stochastic differential systems with finite memory (viz. stochastic functional differential equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a neighborhood of a hyperbolic stationary traject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002